
State-modeling clipf

Dominic Walden

May 15, 2016

1 License

Copyright (C) 2016 Dominic Walden.

Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.3 or any
later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license can be found here: https://gnu.org/licenses/fdl.html.

2 Mission

Using state modeling heuristics to learn about clipf and perhaps �nd some
bugs.

3 Session

While clipf was running I deleted ~/.clipf/. clipf does not recreate �le, but
nothing bad appears to happen as a result.

What it did reveal, however, is that Operations do not appear to be stored
on clipf in the way Products are. After deleting ~/.clipf/ running "op ls"
returns nothing, but "prod ls" returns the Products clipf knew about before
~/.clipf/ was deleted.

This suggests that clipf stores Products "internally" and does not re-read
the Products database after startup. Operations appear to be stored "ex-

1

https://gnu.org/licenses/fdl.html
https://code.google.com/archive/p/clipf


ternally" and the Operations database is re-read each time an appropriate
event is triggered.

If my reasoning above is correct, here are some potential bugs:

1. It means the implementation is inconsistent ("inconsistent with prod-
uct" in Bolton's terminology). This may or may not concern a user of
this program.

2. One of the advantages of using text �les might be to allow clipf to run
"stateless". This is defeated if Product list is stored internal to clipf.

3. Also, allows the possibility of creating an Operation associated to a
non-existent Product, which it normally would not allow.

4. Also, means op and prod commands handle deleting ~/.clipf/ di�er-
ently.

5. Indeed, clipf thinks there might be products (and be able to add more
products) even if product �le does not exist at all.

6. Nor does it write to the DB �le on shutdown, so consistency is not
assured from one session to the next.

7. Doesn't appear to be any way of refreshing the Products clipf knows
about (apart from restarting clipf).

8. No recovery from deleting ~/.clipf/.

Attempting to test the "pre-con�g" state, I changed the permissions on
~/.clipf/ so clipf could not read or write. Started clipf and saw: "Version
mismatch db version is 0.3.5 while program require 0.4 version. Run clipf
with �migrate option to convert database" Which is hidden functionality
which might be worth investigating.

I also discovered that Products are still created (internally to clipf) even if
clipf was unable to read to the DB �le.

I would like to change the encoding of the DB �les to something clipf is not
expecting. Implicitly, I am using the "all-the-ways" heuristic as a way of
learning about the startup/pre-con�g state.

There is a way of updating the Products, so there must(?) be a delete
event/deleting state.

Potentially interesting states to investigate:

2



1. Pre-con�g (Before ~/.clipf/ has been created)

2. Startup (While con�g. options and databases loaded, ~/.clipf/ created
(if applicable), migration to newer DB version)

3. Writing state

4. Reading state

5. Deleting state

6. Shutdown

7. Error handling state

3


	License
	Mission
	Session

